マレスシア・セランゴール州の森林分布

佐野真琴・宫本麻子・古家直行（森林総研）・松本陽介（森林総研九州）
・Ismail Adnan Abdul Malek（マレスシア・ブトラ大学）

Abstract: The forest area decreased greatly by the felling and the agricultural development in Malaysia. We analyzed the different type of forest areas by the landscape metrics in Selangor State to understand the forest distribution of peninsula Malaysia. The digital map (scale1/25,000) made by JUPEM (Malaysian survey and mapping department) was used for the analysis. The digital map of three plots was converted into the GIS data, and the landscape metrics were calculated by FRAGSTATS2.0 that was spatial pattern analysis program for quantifying landscape structure. According to the metrics of the landscape level that show the feature at landscape as a whole, the following was understood. In the plot A, a large patch was dominant, and the landscape structure was comparatively simple. In the plot B and C, the size of one dominant patch was different. However, other areas were similar and the two plots had comparatively complex landscape structures. From the metrics of the class level that show the feature at each land cover, the following was understood. In the plot A, Swamp forests were dominant. In the plot B, Forests were dominant and an agriculture land-use by the Rubber plantations was also dominant. In the plot C, Forests and Rubber plantations were dominant and the influence of human activity by Rubber plantations, other lands such as the residential lot and Tin mines were also large.

Keywords: Malaysia, forest vegetation, land use, land cover, landscape metrics

要旨：マレスシアでは、森林の伐採や農業開発により森林が大きく減少している。本報では、このような状況にある半島マレスシアの森林分布を把握するため、セランゴール州の森林タイプが異なる地域について、ランドスケープ指標による解析を行った。解析にあたって、JUPEM（マレスシア測量地図局）により作成された電子地図（縮尺2万5千分の1）を利用した。3ブロックの電子地図をGISデータに変換し、ランドスケープ構造を定量化する空間パターン分析プログラムFRAGSTATS2.0によりランドスケープ指標を計算した。与えられたエリア全体を示すランドスケープレベルの指標から、ブロックAは大きなパッチが優占する比較的単純なランドスケープ構造で、ブロックB、Cは優占する1パッチの大きさが異なるが他のエリアは類似し、比較的複雑なランドスケープ構造であると考えられた。土地被覆区分ごとの特性を示すクラスレベルの指標から、ブロックAは湿地が優占し、ブロックBは森林が優占するがゴムのブランチシオンという農業的土地利用が進めていること、ブロックCはゴムおよび森林が優占するが、ゴム、住宅地等のその他、スズ鉱山など人為による影響が強いブロックであると考えられた。

キーワード: マレスシア、森林植生、土地利用、土地被覆、ランドスケープ指標

I はじめに

マレスシアは、フタバガキ科の樹木が優占する熱帯降雨林が広く分布している。しかし、今日まで多くの森林が伐採され、また、土地利用の面では森林から農地への転換が進んで、ゴム、アブラヤシ等への大規模な農業開発が強化されてきた。このような状況下、マレスシアでは森林面積の減少が著しく、半島マレスシアでは1974年に1000万haであったものが2002年には589万haへと推移している。また、2002年の半島マレスシアの森林面積を森林タイプ別にみると、天然林では乾燥熱帯林542万ha、湿生林30万ha、マングローブ林11万ha、人工林は7万haとなっており、土地面積に対する林地面積の割合は44.8%である(5)。本報では、このような状況にある半島マレスシアの森林分布の現状を把握するため、セランゴール州の土地被覆が異なる地域における、ランドスケープ指標によりランドスケープ構造を把握し、その違いを定量的に明らかにするとともに、人為による土地変化の進行状況についても検討した。

II 資料と方法

解析にあたって、JUPEM（マレスシア測量地図局）により作成された2003年版の電子地図（縮尺2万5千分の1）
を利用することにした。電子地図上、CADの2次元や3次元のベクトルデータを格納する事実上の業界標準であるDXF形式のファイルで作成され、1ファイルには15km四方の大きさのエリア（22,500ha）が記録されている。解析対象は1ファイルに含まれるエリア全域を1ブロットとし、現地踏査の結果、湿地帯を主体とし丘陵がほとんどされていないブロットA、乾燥内陸林主体とし、やや市街地から離れ入為変化が中等度のブロットB、市街地に近く最も人工変化が進んだブロットC、の合計3ブロットとした（図-1）。

各ブロットのDXFファイルは、Annotation、Multi-Patch、Point、Polygon、Polylineというデータセットで構成されているが、これらは直接土地被覆区分図とし利用できるものではない。このため、土地被覆区分図を作成に必要な土地被覆の情報が詰め込んだPolylineデータをGIS（Arc/Info）へ入力し、等高線等のラインデータ・基準点等の記号データなど不要なデータの削除、道路を示すラインデータから片側5mのバンファーボリゴンを発生させ10m幅の道路ポリゴンを作成、土地被覆区切り線であるラインデータを利用し各土地被覆のポリゴンを発生、各ポリゴンへの土地被覆コードの付与という手順により土地被覆区分図を作成した。使用した土地被覆区分は、森林、湿地帯、ゴム、アブラヤシ、マツ林、灌木、草地、開放地、スズ亀山（露天掘り）、その他（住屋地等）、水系（川、沼、湖）、道路、の12区分である。作成した各ブロットの土地被覆区分図から、ランドスケープ構造を定量化する空間パターン分析プログラムFRAGSTATS2.0（4）のベクターバージョンによりランドスケープ指標を計算した。

Ⅲ 結果

FRAGSTATSは3つのレベルでランドスケープ指標を算出する。すなわち、与えられたエリア全体についてのランドスケープレベル、土地被覆区分ごとのクラスレベル、一つ一つのパッチに関するパッチレベルである。ここでは、ランドスケープレベルとクラスレベルの指標を用い各ブロットの特性を分析する。

１．ランドスケープレベル 各ブロットのランドスケープレベルの指標を示した（表-1）。

<table>
<thead>
<tr>
<th>Plot</th>
<th>LPi</th>
<th>NP</th>
<th>MPS</th>
<th>ED</th>
<th>MSi</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>76.8</td>
<td>33</td>
<td>661.8</td>
<td>6.7</td>
<td>4.0</td>
</tr>
<tr>
<td>B</td>
<td>48.6</td>
<td>325</td>
<td>69.2</td>
<td>22.0</td>
<td>10.4</td>
</tr>
<tr>
<td>C</td>
<td>25.6</td>
<td>446</td>
<td>45.0</td>
<td>26.2</td>
<td>12.2</td>
</tr>
</tbody>
</table>

LPI：最大パッチ指数（％）
NP：ポリゴン数
MPS：平均パッチサイズ（ha）
Mean Patch Size
ED：エッジ密度（m/ha）
Edge Density
MSi：平均形状指数
Mean Shape Index
NCA：コアエリア数
Number of Core Areas
MCA2：平均コアエリア（ha）
Mean Area Per Disjunct Core
SHDI：シャノンの多様性指数
Shannon’s Diversity Index
PR：パッチの豊かさ
Patch Richness
IJI：分散圏指数
Interspersion and Juxtaposition Index

ブロットAは最大パッチ指数が76.8％と大きなパッチが優占し、パッチ数が他のブロットより極端に少ないと考えられる。このため、平均パッチサイズは他のブロットと比較して大きく、エッジ密度が低く、シャノンの多様性指数が小さく、平均形状指数が小さい形状は単純である。形態の単純さからコアエリアに関する指標も、パッチ数、平均パッチサイズと同様の傾向を示している。また、散布配置は3ブロット中で最も小さく、やや偏った配置であることを示している。ブロットCは、最大パッチ指数が56.4％とブロットの4分の1を占めるパッチが存在するが、パッチ数は446とブロットAの約13.5倍である。このため、平均パッチサイズは小さく、エッジ密度が高い。形状もブロット中一番複雑で、シャノンの多様性指数も小さい。コアエリアに関する指数はブロットAと同様の傾向で、パッチ数、平均パッチサイズに従属しているようである。また、散布配置はブロット中一番大きく、偏りの少ない配置であるといえる。ブロットBは、最大パッチ指数が48.6％で3ブロットの中で中庸を示すが、パッチ数は325とブロットCに近い。このため、他の指数も相対的にブロットCと同様な傾向を示している。

これらのことから、ブロットAは大きなパッチが優占する比較的単純なランドスケープ構造であり、ブロットB、Cは優占する1パッチの大きさが異なるが他のエリア
アは類似し、比較的複雑なランドスケープ構造であると考えられる。
2. クラスレベル 各プロットのクラスレベルの指標を示した（表-2）。

プロットAは、湿地林の土被覆割合が92.8%と大部分を占め、次に森林4.4%、灌木2.2%となっている。湿地林は土被覆割合からみるとバッチ数が少なく、このため平均バッチサイズが小さく、平均コアエリアが大きく、また、エッジ密度が高く、散在配置指数が大きいことからブロット全体に分布していると考えられる。水系、道路は面積重み付け形状指数が大きく複雑な形状をしていることを示し、水系は河川が中心のため細長い形状であり、道路も細長い形状であるためと考えられた。これらのことから、ブロットAは、森林が最適でバッチサイズも大きく、ブロット全体を覆っているという特徴を持つと考えられた。

プロットBは、森林の土被覆割合が66.6%と多くを占め、次にゴムが19.8%となっている。森は湿地被覆割合からみるとバッチ数が少なく、このため平均バッチサイズが大きいか、また、散在配置指数も大きい。ゴムは、森林と同傾向で平均バッチサイズ、平均コアエリアが大きいか、エッジ密度は高い。住宅地等の他はバッチ数が多くエッジ配置密度も高い。道路は、面積重み付け形状指数が大きい。これらのことから、プロットBは、ゴムのプランテーションという農業的土地利用が進んでいるがその割合はまだ低く、森林が優占し、かつ、断片化の程度が高くコアエリアは広く保たれているプロットであると考えられた。

プロットCは、ゴムの土被覆割合が39.9%、森林は39.1%と2つの土被覆が多くの部分を占め、次に住宅地等の他10.1%となっている。ゴムは森林よりバッチ数が多いがこれも平均バッチサイズ、平均コアエリアが小さいが、エッジ密度が高く、散在配置指数は大きいため偏りの少ない分布をしていると考えられる。森林は、バッチ数が少ないため、平均バッチサイズ、平均コアエリアともに大きい。水系は小さな沼が多いためバッチ数が多い。道路はその形状および面積重み付け平均形状指数が大きい。また、他のプロットは異なり、スズ鉱山（露

<table>
<thead>
<tr>
<th>Plot</th>
<th>Land cover</th>
<th>%LAND</th>
<th>LP1</th>
<th>NP</th>
<th>MPS</th>
<th>ED</th>
<th>AMMS1</th>
<th>C%LAND</th>
<th>NCA</th>
<th>MCA2</th>
<th>IJ1</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Fo</td>
<td>4.4</td>
<td>4.3</td>
<td>3</td>
<td>329.0</td>
<td>1</td>
<td>4.0</td>
<td>3</td>
<td>39.4</td>
<td>4.1</td>
<td>37.9</td>
</tr>
<tr>
<td></td>
<td>SF</td>
<td>92.8</td>
<td>76.8</td>
<td>8</td>
<td>2609.1</td>
<td>6.2</td>
<td>2.3</td>
<td>91.1</td>
<td>10</td>
<td>2104.9</td>
<td>81.3</td>
</tr>
<tr>
<td></td>
<td>Bu</td>
<td>2.2</td>
<td>1.2</td>
<td>10</td>
<td>48.4</td>
<td>2.3</td>
<td>3.6</td>
<td>1.7</td>
<td>38</td>
<td>33</td>
<td>4.2</td>
</tr>
<tr>
<td></td>
<td>Gr</td>
<td>0.2</td>
<td>0.1</td>
<td>7</td>
<td>6.7</td>
<td>0.8</td>
<td>3.1</td>
<td>0.1</td>
<td>1.5</td>
<td>3.3</td>
<td>40.4</td>
</tr>
<tr>
<td></td>
<td>OL</td>
<td>0.0</td>
<td>0.0</td>
<td>5</td>
<td>8.6</td>
<td>0.0</td>
<td>1.1</td>
<td>0.0</td>
<td>1.2</td>
<td>1.3</td>
<td>44.8</td>
</tr>
<tr>
<td></td>
<td>Wa</td>
<td>0.4</td>
<td>0.4</td>
<td>3</td>
<td>32.2</td>
<td>2.4</td>
<td>14.3</td>
<td>0.1</td>
<td>27</td>
<td>0.4</td>
<td>36.4</td>
</tr>
<tr>
<td></td>
<td>Ro</td>
<td>0.0</td>
<td>0.0</td>
<td>7</td>
<td>7.6</td>
<td>0.7</td>
<td>15.6</td>
<td>0.0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>Ru</td>
<td>19.8</td>
<td>5.1</td>
<td>17</td>
<td>101.6</td>
<td>7.6</td>
<td>2.5</td>
<td>64.7</td>
<td>10</td>
<td>91.0</td>
<td>80.7</td>
</tr>
<tr>
<td></td>
<td>OP</td>
<td>0.0</td>
<td>0.0</td>
<td>2</td>
<td>4.7</td>
<td>0.1</td>
<td>1.3</td>
<td>0.0</td>
<td>2</td>
<td>3.0</td>
<td>37.6</td>
</tr>
<tr>
<td></td>
<td>PT</td>
<td>0.7</td>
<td>0.5</td>
<td>2</td>
<td>74.9</td>
<td>0.3</td>
<td>1.4</td>
<td>0.6</td>
<td>66</td>
<td>6.7</td>
<td>49.0</td>
</tr>
<tr>
<td>B</td>
<td>Bu</td>
<td>2.6</td>
<td>0.8</td>
<td>26</td>
<td>22.2</td>
<td>3.0</td>
<td>2.2</td>
<td>2.0</td>
<td>34</td>
<td>13.2</td>
<td>66.6</td>
</tr>
<tr>
<td></td>
<td>Gr</td>
<td>1.8</td>
<td>0.4</td>
<td>38</td>
<td>10.6</td>
<td>4.2</td>
<td>3.3</td>
<td>1.0</td>
<td>55</td>
<td>4.2</td>
<td>75.2</td>
</tr>
<tr>
<td></td>
<td>OL</td>
<td>0.5</td>
<td>0.4</td>
<td>6</td>
<td>25.7</td>
<td>0.6</td>
<td>2.7</td>
<td>0.4</td>
<td>16</td>
<td>6.7</td>
<td>67.4</td>
</tr>
<tr>
<td></td>
<td>Ot</td>
<td>6.6</td>
<td>0.6</td>
<td>119</td>
<td>12.2</td>
<td>10.3</td>
<td>2.3</td>
<td>4.6</td>
<td>166</td>
<td>6.3</td>
<td>70.8</td>
</tr>
<tr>
<td></td>
<td>Wa</td>
<td>1.3</td>
<td>0.9</td>
<td>75</td>
<td>3.9</td>
<td>4.3</td>
<td>4.0</td>
<td>0.8</td>
<td>23</td>
<td>7.9</td>
<td>68.6</td>
</tr>
<tr>
<td></td>
<td>Ro</td>
<td>0.2</td>
<td>0.1</td>
<td>8</td>
<td>5.9</td>
<td>4.2</td>
<td>22.7</td>
<td>0.0</td>
<td>0</td>
<td>0.0</td>
<td>53.4</td>
</tr>
<tr>
<td>C</td>
<td>Fo</td>
<td>39.1</td>
<td>24.4</td>
<td>12</td>
<td>732.9</td>
<td>6.3</td>
<td>2.8</td>
<td>37.6</td>
<td>14</td>
<td>604.8</td>
<td>77.3</td>
</tr>
<tr>
<td></td>
<td>Ru</td>
<td>39.9</td>
<td>25.6</td>
<td>47</td>
<td>183.0</td>
<td>12.5</td>
<td>4.1</td>
<td>37.3</td>
<td>51</td>
<td>164.4</td>
<td>87.1</td>
</tr>
<tr>
<td></td>
<td>OP</td>
<td>1.9</td>
<td>0.4</td>
<td>19</td>
<td>22.1</td>
<td>1.6</td>
<td>1.5</td>
<td>1.5</td>
<td>21</td>
<td>16.4</td>
<td>41.0</td>
</tr>
<tr>
<td></td>
<td>Bu</td>
<td>1.7</td>
<td>0.2</td>
<td>33</td>
<td>11.2</td>
<td>2.5</td>
<td>1.7</td>
<td>1.2</td>
<td>49</td>
<td>5.3</td>
<td>79.4</td>
</tr>
<tr>
<td></td>
<td>Gr</td>
<td>2.0</td>
<td>0.4</td>
<td>38</td>
<td>11.8</td>
<td>3.0</td>
<td>1.8</td>
<td>1.4</td>
<td>14</td>
<td>5.9</td>
<td>82.6</td>
</tr>
<tr>
<td></td>
<td>OL</td>
<td>0.9</td>
<td>0.6</td>
<td>12</td>
<td>17.6</td>
<td>0.7</td>
<td>1.3</td>
<td>0.8</td>
<td>13</td>
<td>13.8</td>
<td>51.8</td>
</tr>
<tr>
<td></td>
<td>TM</td>
<td>1.9</td>
<td>0.6</td>
<td>12</td>
<td>35.8</td>
<td>3.5</td>
<td>4.2</td>
<td>1.3</td>
<td>42</td>
<td>6.7</td>
<td>68.4</td>
</tr>
<tr>
<td></td>
<td>Ot</td>
<td>10.1</td>
<td>2.2</td>
<td>95</td>
<td>24.0</td>
<td>10.9</td>
<td>2.4</td>
<td>7.4</td>
<td>124</td>
<td>13.4</td>
<td>66.9</td>
</tr>
<tr>
<td></td>
<td>Wa</td>
<td>2.4</td>
<td>1.2</td>
<td>170</td>
<td>3.2</td>
<td>7.2</td>
<td>3.7</td>
<td>1.3</td>
<td>135</td>
<td>2.2</td>
<td>74.3</td>
</tr>
<tr>
<td></td>
<td>Ro</td>
<td>0.2</td>
<td>0.6</td>
<td>8</td>
<td>8.1</td>
<td>4.3</td>
<td>20.4</td>
<td>1.3</td>
<td>11</td>
<td>26.8</td>
<td>0.0</td>
</tr>
</tbody>
</table>

指標 Metrics；
%LAND: 濃度被覆割合(%) Percentage of Landscape, AWMS1: 面積重み付け平均形状指標 Area-Weighted Mean Shape Index, C%LAND: コアエリア割合(%) Core Area Percentage of Landscape, NCA: コアエリア数

Number of Core Areas

土地被覆 Land cover；

— 63 —
天掘り）が存在し、平均バッチサイズが35.8haと比較的大きい。これらのことから、プロットCは、ゴムと森林が優占し、森林が断片化しており進んでいない大きなまとまりとして存在するが、ゴム、住宅地等のその他、スズ蟳山など人為による影響が他のプロットより強いと考えられる。

IV 考察

ランドスケープ指標を用いた土地利用に関する研究は、異なる地域間の差異に関する研究（6,7）、同一対象地における時系列変化に関する研究（1,2,3）、など今日まで多数なされてきた。地域間の差異に関する研究のうち、ジョージア州の海岸から山岳地までの9か所の地域で、ランドスケープ指標により分析された結果では、農業的利用の平均バッチサイズは海岸平地で増加し、山岳地、高原で減少、多様性と優占度の指数は地域間では変わらないが、全体としてランドスケープパターンは高原で最も大きな変化を示すと報告されている（6）。また、Phoenix近郊地域において都市中心部から東西方向に設けたトランジットによるランドスケープ指標による分析結果では、ランドスケープレベルの指標は都市化によりバッチ密度、エッジ密度、形状の複雑さが増加し、クラスタレルの指標は各土地利用がより詳細にトランジットに沿った空間的特徴を示し、都市-郊外-自然の環境構造に沿ってランドスケープパターンの変化が認められると報告している（7）。

ランドスケープレベル、クラスターレベルの結果をまとめ、各プロットの特徴をみると、プロットAは湿地帯が優占しバッチサイズが大きく単純なランドスケープ構造であり、プロットCはゴムと森林が優占しその他の約10%を含む複雑なランドスケープ構造で、プロットBは森林が優占するがプロットAより高いランドスケープの複雑さを示すと考えられる。このことは、対象とする地域の構成要素が異なるが、人為による土壌変化の程度から地域特性の土壌変化の割合が増減し、それにより平均バッチサイズやエッジ長などが変化すると、ジョージア州やPhoenix近郊地域での結果と一致する。

以上のように、3つのプロットの森林分布の違いは、ランドスケープ指標により把握され、それは人為による土地変化の程度を関連していると考えられた。

V おわりに

本報では、マレーシア・セランゴール州に3つのプロットを設定し、そのランドスケープ構造の差異についてランドスケープ指標により把握した。今後は、地域による違いとともに時系列の変化についてもランドスケープ指標による検討を行いたい。これにより人間活動による森林の面的な変化の過程が定量的に明らかになり、今後の森林保全・管理に役立つ資料を作成可能となるものと考えられる。

引用文献


