γ線照射したヒノキ培養細胞からの分化

著者名: 緒井佳久・丸山エミリオ・石井克明（森林総研）・長谷雄宏・田中淳（原研・高崎）

要旨: 7月上旬に採取したヒノキの未熟種子を、0.2%活性炭を添加した1/2 EM培地で培養し、不定胚形成細胞を誘導した。2週間ごとに新代培養を繰り返して増殖させた不定胚形成細胞に、10、100Gyのγ線を照射した。γ線照射後の細胞をポアサイズ100μmのメッシュにして培養した後、顕微鏡で観察しながらマイクロマニピュレータで1細胞ずつ拾取り、96Wエルラマイクロプレートを使って単一細胞の培養（1細胞/レル）を行った。100Gyを照射した細胞では、照射2日目の生存は確認できたが、その後全て娯歎・枯死した。それ以下の照射線量では生存する細胞が見られ、分裂増殖して再び不定胚形成細胞状の形態を示した。これらの細胞を不定胚の成熟用培地で培養し、形成された不定胚を発芽用培地へ移すことにより植物体を分化させることが出来た。また、幼根が十分に発達していない不定胚については、その未発達な根部を取り除き、3μM IBAを添加した発根用培地へ移植することで植物体を得ることが出来た。なお、比較としてヒノキ実生から誘導した苗条原基（2mm）にも5、10、50、100Gyのγ線を照射してみたところ、全ての線量において枯死した。

キーワード: ヒノキ、γ線、不定胚形成細胞、苗条原基、マイクロマニピュレータ

I はじめに

γ線照射による形質変異体の作出および育種への利用は、多くの植物で試みられてきた。通常植物体や組織に照射した場合、突然変異した細胞と正常細胞が混在するキメラを形成するため、変異の選抜・固定が容易ではない。そこで、細胞・組織培養とγ線照射を組み合わせることにより一部の植物では単一の突然変異細胞から完全な変異個体の作出が可能である。しかし、林木においては現在まで細胞培養系の確立が困難であり、単一細胞由来の変異体の作出は現時点では難しいと考えられる。筆者らは数種の国産針葉樹について不定胚形成能力を持つ細胞（不定胚形成細胞）を種子胚より誘導し、その細胞からの植物体形成に成功している（2, 5, 7, 8, 9, 10）。また、スギやヒノキ、サワラについてはプロトプラストを利用した細胞培養により植物体を再生化させることができた（3, 4, 6）。今回は、ヒノキの不定胚形成細胞の単一細胞の培養とγ線照射とを組み合わせてキメラの状態を経ることなく突然変異個体を作成する条件を検討した。

II 材料と方法

1. 不定胚形成細胞の誘導・増殖 2004年7月初旬に茨城県林業技術センター構内に植栽されている精質樹から未熟球を採取した。果実から取り出した種子を1％次亜塩素酸ナトリウム溶液で30分浸漬後、クリーンベンチ内で種皮を剥き、不定胚形成細胞誘導用の固形培地に植株した。培地には1/2 EM培地（7）を用い、24℃、暗黒下で培養した。誘導した不定胚形成細胞について、維持・増殖用に、無機塩濃度を1/2に下げたMS培地（ただし硝酸アンモニウムは無添加）に0.3μM 2, 4-D, 1μM BAと500μg/lのカゼイン加水分解物を添加した液体培地で培養した。培養には径90mmのプラスチックシャーゲーを用い、暗黒下、24℃で行った。

2. 苗条原基の誘導・増殖 不定胚形成細胞を比較するため、1983年に実生から誘導し、維持・増殖している苗条原基を実験に用いた（1）。

3. γ線の照射 増殖した不定胚形成細胞を、ポアサイズ40μmのセルストレーナー（FALCON）上に転し、新しい培養用培地で洗浄した後、培地を注入した径60mmのシャレに植株した。培地には1％寒天で固形化した細胞培養用の培地を用いた。苗条原基は、約2mmの大きさにメスで切り分け、維持培養時と同じ様の培地を分注した60mmのシャレ内で50個ずつ植株した。

γ線の照射は、（独）日本原子力研究開発機構の高崎研究所にて行った。シャレごとに30分間ずつ線量率を変えて5, 10, 50, 100Gyの線量を照射した。

4. 単一細胞の培養 照射2日後に、シャレの細胞を廃棄培養で用いる液体培地に懸濁した後、ビペットで吸引し、ポアサイズ100μmのセルストレーナーを通した（図-1）。照射した細胞は、プラブラを避けるためにマイクロマニピュレータで用いて分裂面のない単細胞のみを選別して拾い取り、96Wエルラマイクロプレートに1μWに1細胞ずつ移植して培養した（図-2）。培地には廃棄培養用の培地と同様の液体培地を用い、1μWあたり100μlとした。γ線照射後に生存、分裂増殖した

細胞は、その後90mmのシャーレへ移し後代培養とした。マイクロプレートからシャーレに移す際にはシャーレごとに単一細胞由来の測定細胞を移植し、他の照射細胞由来の測定細胞と混ざり合わせないように注意した。

5. 不定胚形成細胞の成熟化 増殖した培養細胞は不定胚成熱用の固定培地に移植した。培地には硝酸アノニウム0.5mM、無機塩を1/4に下げて、10mMカルシウム、15%ポリエチレン glycol（平均分子量：3,000）、0.2%活性炭、塩類の代わりに6%マルトースを添加し、0.3%アラゴニンで固定化した培地を用いた。培養には90mmのシャーレを用い、暗黒下、24℃で培養した。成熟した不定胚は発芽用固定培地へ移植した。培地には硝酸アノニウム無添加で、他の無機塩濃度を1/2に下げ、塩類を10g/l添加したMS固定培地を用いた。培養には90mmのシャーレを用い、16時間3,000lx蛍光灯照下、24℃で培養した。

6. 苗条原基の生存率の測定 γ線照射後1ヶ月目と4ヶ月目に各照射区の100個の苗条原基にについて、目視により緑色を呈する場合を健全と判定した。

III 結果と考察
1. 不定胚形成細胞の誘導・増殖 種子を1/2 EM培地上で培養すると、カルス状に増殖する半透明な細胞塊が現れた。顕微鏡の下に観察すると、サスペンサー細胞と緻密な細胞胞質から成る不定胚形成細胞であった。得られた不定胚形成細胞を、液体培地に移すとよく増殖した。増殖培養の間隔は2週間以上隔週をあけると枯死する細胞が増え、増殖能も低下するため2週間ごとに後代培養することとした。

2. γ線照射した細胞の生存率比較と培養 照射5日後、FDAの観光光発光により生存率を測定すると、81%から99%の生存率となり、どの照射区でもよく生存していた（表-1）。しかし、γ線照射後2日目にマイクロマニピュレーターを使ってピックアップした照射細胞を、マイクロプレートで一巢ずつ培養すると、1ヶ月後には10 Gy照射した細胞は全て枯死した（表-2）。この時、5 Gy照射した場合の生存率は16%であり、非照射の場合は生存率18%より若干低下した。5 Gy照射区では最終的に7個の細胞スレインが残り、それぞれスレインごとに後代培養し、後者の分化実験に用いた。

γ線照射後、マイクロプレートでの培養（1細胞/ウェル）をせず、そのまま照射時の60mmシャーレ上に残した細胞は、50 Gy以下の照射区では生存して増殖した。増殖した細胞は、照射後30日にセルストレーナーを通して後らした後、マイクロマニピュレーターを用いて一細胞ずつマイクロプレートで培養した。100Gy照射した場合には全て死滅した。最終的に10 Gyで3、50 Gyで4つの細胞スレインを残し、それぞれを後代培養した後に、分化実験に用いた。単一の細胞から分裂し、増殖した細胞は、顕微鏡観察すると不定胚形成細胞を形成していた。しかし、例外的にサスペンサー細胞をほとんど持たず、増殖の遅い細胞がスレインを形成された。

3. 不定胚形成細胞の成熟化 照射後に分裂・増殖した細胞に不定胚形成を促すため、成熱用培地に移植すると、細胞のスレインにより異なるが、白色で突裂する不定胚が多数形成された。そのうちいくつかのスレインでは、子葉の分化がみられた（図-3）。子葉の分化した不定胚は、50 Gy照射した細胞の1/2のスレインにおいて、最高142個得られた（表-3）。分化に用いた細胞は、スレインの違いによって反応が大きく異なり、同一の分化条件では分化しない場合も多かった。γ線照射により分化しにくいような変異が生じたが、あるいは適した培養条件が変化した可能性もある。

子葉の分化した不定胚は、発芽用の培地に移植して培養すると、発芽して幼植物体を形成した（図-4、表-3）。幼植物体形成後の観察では、非照射の細胞から分化した幼植物体との違いは見られていなかった。照射した細胞の変異や細胞のスレインによって、その後の細胞の増殖、形成に違いが見られ、分化能力にも差が見られるため、さらに長期にわたり観察する必要がある。

4. 苗条原基の生存率 5 Gyを照射した場合、1ヶ月目には98%と非照射の場合とはほぼ同様な生存率を示したが、4ヶ月目には2%に減少し、その後全て枯死した（表-4）。また、100 Gy照射区では1ヶ月後にはすべて枯死した。苗条原基を材料とした場合、表面に低いγ線を照射する必要があることがわかった。

IV おわりに
今後は木部での、植物個体や組織・器官に放射線照射して突然変異体を作出する研究が行われてきた。そのため、細胞ごとに生存する変異をキャッチし、その変異を基に、放射線照射が生物の生育に与える影響を詳しく調べる必要がある。また、組織や器官の変異中には、突然変異を起こす細胞が遊れる可能性がある。放射線照射による変異の発現を抑制する手段を検討する必要がある。
成細胞からの再分化系が確立されている他の針葉樹にも応用可能であることを示すことができた。

最後にヒノキ精密樹の球果採取にあたり、ご協力頂いた茨城県林業技術センターの方々に厚くお礼申し上げる。

引用文献
(2) 細井佳久・丸山エミリオ・石井克明（2002）絶滅危惧種ヤクタネゴヨウの不定胚形成細胞の誘導と分化. 日林関東支論54：171～172.
(3) 細井佳久・丸山エミリオ・石井克明（2005）ヒノキのプロトプラスト培養による不定胚の再分化. 日本植物細胞分子生物学大会講演23：91.
(5) 細井佳久・丸山エミリオ・石井克明（2005）ヤクタネゴヨウ自生個体の未熟種子からの不定胚形成と茎分化. 日林関東支論56：113～114.
(6) 細井佳久・丸山エミリオ・石井克明（2006）スキ不定胚形成細胞から単離したプロトプラストからの分化. 日本植物細胞分子生物学大会講演24：166.

表-1 不定胚形成細胞のFDAによる生存率の測定結果

<table>
<thead>
<tr>
<th>照射線量[Gy]</th>
<th>生存率[%]</th>
<th>生存細胞数/測定細胞数</th>
</tr>
</thead>
<tbody>
<tr>
<td>非照射</td>
<td>81</td>
<td>112/148</td>
</tr>
<tr>
<td>5</td>
<td>83</td>
<td>98/118</td>
</tr>
<tr>
<td>10</td>
<td>81</td>
<td>72/89</td>
</tr>
<tr>
<td>50</td>
<td>89</td>
<td>33/48</td>
</tr>
<tr>
<td>100</td>
<td>83</td>
<td>214/257</td>
</tr>
</tbody>
</table>

* γ線照射5日後に測定

表-2 マイクロプレートによる培養1ヵ月後の生存率

<table>
<thead>
<tr>
<th>照射線量[Gy]</th>
<th>生存率[%]</th>
<th>生存細胞数/測定細胞数</th>
</tr>
</thead>
<tbody>
<tr>
<td>非照射</td>
<td>18</td>
<td>8/44</td>
</tr>
<tr>
<td>5</td>
<td>16</td>
<td>7/45</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0/46</td>
</tr>
<tr>
<td>50</td>
<td>0</td>
<td>0/53</td>
</tr>
<tr>
<td>100</td>
<td>0</td>
<td>0/39</td>
</tr>
</tbody>
</table>

* 1細胞/ウエルで培養

表-3 子葉の分化した不定胚数

<table>
<thead>
<tr>
<th>照射線量[Gy]</th>
<th>【ストレインNo.】</th>
<th>不定胚数</th>
</tr>
</thead>
<tbody>
<tr>
<td>非照射</td>
<td></td>
<td>182</td>
</tr>
<tr>
<td>5</td>
<td>①</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>②</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>③</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>④</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>⑤</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>⑥</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>⑦</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>①</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>②</td>
<td>6(4)</td>
</tr>
<tr>
<td>10</td>
<td>③</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>①</td>
<td>142(16)</td>
</tr>
<tr>
<td>50</td>
<td>②</td>
<td>28(1)</td>
</tr>
<tr>
<td>50</td>
<td>③</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>④</td>
<td>24(4)</td>
</tr>
</tbody>
</table>

* 各不定胚数は2シャーレの合計. うち括弧内はその後得られた植物体の総数
表-4 γ線照射した苗条原基地の生存率

<table>
<thead>
<tr>
<th>照射線量 [Gy]</th>
<th>生存率 [%]</th>
<th>1ヶ月後</th>
<th>4ヶ月後</th>
</tr>
</thead>
<tbody>
<tr>
<td>非照射</td>
<td>100</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>98</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>24</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

図-1 セルストレーナーを通過した細胞
図-2 マイクロマニピュレーターによる移植
図-3 子葉の分化した不定胚
図-4 発芽伸長する再生幼植物