多周波数方式体脂肪計MLT-30を用いた樹木のインピーダンス測定例

坂本一之吉・川端正人・鈴木邦夫・本江一郎（日大生物資源）

要旨：樹木の生体インピーダンスは、樹体細胞の活性度や含水量をあらわすとされている。しかしインピーダンスの測定には、大型で高電流を必要とする機器が必要で、測定対象に合わせた機器を開発してはならない。現在の既存製品ではインピーダンス測定が可能になれば、樹木の生体状態を数値情報として把握し、森林管理、果樹管理、樹勢回復の現場で活用できると考えられる。

市販されている積水化学製（株）製の体脂肪計MLT-30を用いて樹幹のインピーダンス測定の方法を検討し、測定値をCole-Coleプロットで表現して考察を行った。その結果、人体と同じ方法を適用した場合、樹木の抵抗値の違いを補う為に、樹木の抵抗値に含まれる電流・電圧を用いること、そして被検体低電圧・低電流でも測定可能になるように電極を使用することが必要だとわかった。

キーワード：インピーダンス、Cole-Coleプロット、抵抗値

I はじめに

樹木の生体インピーダンスは、樹木の生体状態を表す方法として、インピーダンス測定がある。樹木インピーダンスは、樹木細胞の活性度や含水量をあらわすとされている。従来たインピーダンス測定には、大型で高電流が必要であり、測定対象に合わせた機器を開発しなければならない。しかし、既存のインピーダンス測定装置で樹木のインピーダンス測定が可能であれば、誰でも簡単に測定が可能である。測定値をCole-Coleプロットで表現して考察を行った。その結果、樹木の抵抗値の違いを補う為に、樹木の抵抗値に含まれる電流・電圧を用いること、そして被検体低電圧・低電流でも測定可能になるように電極を使用することが必要だとわかった。

積水化学製（株）製の体脂肪計MLT-30は、140ポイントの周波数で人体のインピーダンスを測定する。1回の測定時間は10秒程度で短時間であり、電池で動作品やコンパクトなので野外での使用も可能です。このMLT-30を使用して樹木のインピーダンス測定を試みた。インピーダンス測定の対象部位は、樹幹、枝、葉、根などがあるが、今回は、樹幹のインピーダンス測定について検討した。

II 方法

測定対象の樹木は、幹直径が約20mmの楠などのケヤキを使用し、外界の電気的ノイズをなるべく受けないように、室内で設定した。

MLT-30の電極は基本が4電極法であり、通常は電流電極を外側にして、電圧電極を内側にセットした。

図1：直径20mmのケヤキの電極設置状況

測定されたインピーダンス値は、電流の流れにくさであるレジスタンスR（Ω）と、交流電流の流れにくさであるリアクタンスX（Ω）の和で表現する。通常はRを実数、Xを虚数とした複素数平面上に表し、Cole-Coleプロットを用いる。

Cole-Coleプロットは、複素数平面上に周波数で測定されたインピーダンス値を、低周波から高周波の順にプロットしたグラフであり、インピーダンスの意味解釈を容易に行う為に使用する。

静電容量が1つであり、生体インピーダンスを測定した場合には、Rが正、Xが負の領域で表され、半円、または半円の一部を描く。MLT-30はパソコンを用いてデータを取り込むことが可能であり、Cole-Coleプロットを容易に作成することができる。測定されたデータ、測定結果の傾向を図示し、Cole-Coleプロットを描いた。

Itisuky SAKAMOTO, Yohito KAWABATA, Kunio KITAI, and Ichiro HONGO (College of Bioresources Science, Nihon Univ., 1866 Kameino Hujisawa-ri, Kanagawa-ken 252-8510) The impedance measurement example of the tree by using the many frequency method body fat meter. MLT-30

—315—
結果
電極間の間隔を検討した際、約5cmでは測定不可となったので、間隔を約4cm、3cmと縮めていった。すると約3cmで測定成功した。しかし、同じ3cmの間隔でも、成功した時と別の場所に新しく釘を打ち込むと、測定不可であることが分かった。測定不可である時間は長めで、成功率は50パーセントとなった。測定成功となった時は繰り返し測定を行っても成功であった。4電極法を行う時、電極間隔を3cm以下にして測定することは物理的に困難であったため、以降は電極間隔を3cmで、釘の位置を変えながら測定を行った。
測定成功した測定データを用いて、Cole-Cole プロットを描いた。グラフの形は様々で、理想とする半円を描いているもの（図2a）もあり、リアクタンスが正になっているもの（図2b）、直線状のもの（図2c）、螺旋を描いているもの（図2d）などがあり、電極のセットをやり直すとき、Cole-Cole プロットは全く別の形になるということが分かった。また、電極を再セットせずに測定を行うと、類似のグラフが得られた。

図2a. 半円を描いたプロット

図2b. リアクタンスが正のプロット

図2c. 直線を描いたプロット

図2d. 螺旋を描いたプロット

考察
この現象を推定すると、電極を配置しなおすことで測定可・不可が分かることから、電極である釘と樹木体との接触面に抵抗が生じていることが原因と考えられる。抵抗を減少させるために、日本光電製のオキシオクリームを電極に塗布し、再び測定を行った。これは、心電図の測定において電極と皮膚との接触抵抗を下げるために市販されており、電極と樹幹との接触抵抗を減少させることを期待して使用した。電流電極の4本の釘を打ち込む際に、先にクリームを塗布した。電極電極に、事前にドリルで穴を開け、中にクリームを塗布した電極を差し込む方法をとった。しかし、測定成功率を塗布しない場合と変わらず50%であり、クリームは結果に影響しなかった。

得られたCole-Cole プロットの内図2a は、意味を見つけるのにふさわしい半円を描いている。しかし、電極のRは1kΩ以下であるのに対し、図2a の時のRは0.7～3 kΩであった。MLT30 は人体向けの装置であり、人体よろしくなる大なる樹木の抵抗値を低電流、低電圧で正確に測定されているが疑問が残る。確かに半円を描いているが、ノイズなどの影響があったとも考えられる。

正確な樹幹のインピーダンスを測るには、樹木の抵抗値に合った測定方法が必要である。MLT30と同様の機能を持ちつつ、従来のものと比べ高い電流を流すことで抵抗値の測定範囲を広げ、松の木を模して2～20 kΩを測定できることが望ましい。もしこのMLT30でも電極間隔をもっと短くして測定を行うことで電極の工夫でRが1kΩ以下となるようにすれば、樹木のインピーダンス測定より正確に行える可能性がある。引き続き測定方法を改善していく。

引用文献
(1) 須田国ほか（1992）植物電気インピーダンスの自動測定装置、電子情報通信学会技術研究報告, 92-146, 2328
(2) 山本秀武ほか（1997）生体インピーダンスを用いた植物の活性評価に関する研究、バイオシステムにおける計測・制御シンポジウム論文集2126
(3) 山崎雄二（2000）人と植物の新世紀―電気で植物を測る―とげ試み（中編）菊水SAWS. Vol12

316