林床等外野を利用したアラゲキクラグラ菌床栽培

大橋洋二, 谷山奈緒美（栃木県立）

要旨：アラゲキクラグラの菌床栽培を行い、発生操作方法の検討及び培地組成の検討を行った。発生操作方法については、菌床に多数の切れ込みを入れる発生操作方法が最も適しており、収穫量が有意に増加することが確認された。また、子実体の9割以上は菌床側面から発生し、菌床側面の切れ込みが有効であると考えられた。培地組成については、栄養材の割合を増やした培地において、収穫量が有意に増加するものの、収穫までに要する期間は長くなり、さらに病菌に汚染されやすいことも考えられた。

キーワード：アラゲキクラグラ、菌床栽培、発生操作

Abstract: Various method of preoperation to saw bed and saw bed compositions were investigated using Auricularia polytricha. Yield of fruiting body increased obviously by cutting method that takes small mound. Above 90% yield of fruiting body was observed in side of saw bed. The results obtained suggest that cutting the side of saw bed was more suitable for yield. On the other hands, saw bed cultivation which was increased supplement ratio recorded most harvest, however, not only period required for crop harvest was longer, but also contamination ratio of harmful fungi was higher.

Keywords: Auricularia polytricha. Saw bed cultivation, method of preoperation to saw bed

I はじめに

野生を利用したキノコ栽培は、施設栽培に比べて設備投資が少ないことから、産業者新規参入を促進させるためにも非常に重要な栽培技術と考えられる。

アラゲキクラグラ（Auricularia polytricha）は、広葉樹の枯れ木に発生し、日本全土に分布するキノコである（1）。

アラゲキクラグラの菌床栽培は、密着した菌体の底部に、袋の上から十字の切込みを入れる方法が知られているが（4）。近年では袋の側面に切込みを入れる方法などが報告されている（2）。本研究においては、野生を利用したアラゲキクラグラ菌床栽培において、切込み方法などの発生操作方法、及び培地組成が与える収穫量の変化等について調査を行った。

II 材料と方法

種菌は、大貫菌叢、大貫 A2 号を使用した。菌床の基本培地は、コナラが粉と米ぬかを、絶乾重量比10：3で配合し、含水率を65%に調整したものを使用した。培地は、フィルター付きポリプロピレン袋に、重量が1.0 kgになるように詰め、高圧殺菌釜を用いて殺菌（121℃、60min）後、種菌を接種し、22℃、湿度95％で45日間培養した。発生操作は、平成22年7月2日にみ、培地は室温で収穫した菌床で覆ったバイブハウスで行った。菌床は、地面にワラを敷き並べ上に配置し、その上部をトンネルフレームと寒冷箱で覆った。

1. 発生操作方法比較試験　4種の発生操作方法について検討を行った。袋の上から、袋の側面に切込みを入れる方法を対照区とし、袋の側面に切込みを入れた方法を斜め区とし、袋の側面に切込みを入れた方法を直角区とした。さらに、袋の側面をカットし、袋内を浸水させ、上部は4cmの十字の切込みを入れる方法を上部区とした。上部区は、袋体内を上にして設置し、各試験区とも10個の菌床で栽培を行った。それぞれの試験区において、収穫量、底面・側面別の発生割合及び収穫時期について調査を行った。

2. 菌床培地組成比較試験　基本培地の他に、2種類の培地組成について検討を行った。スギが粉と米ぬかを、絶乾重量比10：3で配合したものをスギ区とし、コナラが粉と米ぬかを、絶乾重量比7：3で配合したものをコナラ区とした。含水率は、全ての試験区で65%に調整した。発生操作方法比較試験と同様に、各試験区とも10個の菌床で栽培を行い、収穫量及び収穫時期について調査を行った。

III 結果と考察

1. 発生操作方法比較試験　対照区と比較して、斜め区

Yoji Ohashi and Naomi Tanigama (Tochigi Pref. For. Res. Ctr, Utsunomiya Tochigi 321-2105)

Saw bed cultivation of Auricularia polytricha at the outdoor field such as forest floor

—171—
と上記区においては同等の収穫量であったが、多点区におい
て、収穫量が有意に増加する事が認められた（図-1）。
これごち、側面に多数の動きを入る方法で、増
取効果があることが判明したが、側面の施設延長と収穫
量との関係は認められなかった（表-1）。

<table>
<thead>
<tr>
<th>1個床当たり収穫量（kg/床）</th>
</tr>
</thead>
<tbody>
<tr>
<td>対照区</td>
</tr>
<tr>
<td>229</td>
</tr>
<tr>
<td>225</td>
</tr>
<tr>
<td>2,604</td>
</tr>
<tr>
<td>90%</td>
</tr>
</tbody>
</table>

図-1 各試験区の1個床当たり収穫量

Table 1 Yield on position of bed

| | 対照区 | 斜め区 | 多点区 | 上面区 |
|-----------------------------|
| 割絞延長 | 60cm | 40cm | 114cm | 32cm |
| 総収穫量 | 2,829 | 2,733 | 3,190 | 1,992 |
| 播種 | 90% | 100% | 97% | 0% |

発生部位に関しては、底面から発生しない斜め区、側面
がほとんど露出していない上区を除けば、収穫量の約8割
以上が側面から発生している事が判明（図-1）。対照
区においては、底面部分に割絞延長の40%が存在するのに
もかかわらず、収穫量が10%程度にとどまっていたことや、
斜め区においても、対照区と向等の収穫量が得られていた
ことからも、発生操作方法として、菌床底面部分の切開は
有効ではないことが示唆される。

収穫時期に関しては、上区を除いて同様の傾向を示し、
発生期を7月25日で収穫が終り、25日程度でピーク
を迎え、1ヶ月程度収穫が続いていた（図-2）。これに対
し、上区では大きなピークは見られず、2ヶ月間におた
り、散発的に発生が続いている。

2. 菌床塚地図蛇縮比較試験

スギ区においては、収穫量が有意に低下しており、得られる子実体数においても薄肉のものが多い傾向がみられた。

図-2 各試験区の収穫時期

Fig. 2 Harvest time in each plot

成長が悪い事を報告されており（3）、スギの枯死はアラ
ゲキクラゲの発育基材として不適当である事が示唆され
る。これに対して、栄養区では、収穫量が有意に増加する
ことが確認され、得られる子実体数も高力が高いものが多く
顕明な傾向がみられた。また、地温基材の4割という、非常
に高収穫量が得られたが、収穫終了直後から1ヶ月の間
に、全ての菌床が、Trichoderma 属菌に汚染されることか
ら、害菌に汚染されやすい配合である事が示唆される。

収穫時期に対しては、スギ区では対照区と同様の傾向が
みられたが、栄養区では発生までに要する期間が長くなり、
発生のピークも10日ほど遅くなっていた。また収穫期間
についても長くなる傾向があり、2ヶ月ほど発生が続いて
いった。

IV おわりに

アラゲキクラゲの菌床栽培は、設備投資の少ない野外に
おいて、実用的な栽培が可能であることが確認された。
子実体の収穫が1ヶ月程度続続することにより、継続的な収
入も期待できることからも、野外栽培に適したキノコであ
ると考えられる。

本研究は平成 22 年度新たな農林水産施策を推進する実
用技術開発事業委託事業「関東・中部の水田地域を活性
化する特用林産物の生産技術の開発」（課題番号 18021）で
得られた成果の一部である。

V 引用文献

（1）今関六也・中野次雄（1989）原色 日本新菌類図鑑
（II）：233，保育社，大阪
（2）木村栄一（2010）最新の子実体栽培技術 212-216，
プレシスワールド，東京
（3）金城一彦・近藤民雄（1979）担子菌栽培技術に関す
る研究（第3報），木材学会誌 28：799-803
（4）日本きのこセンター（編）（1985）図解やさしいき
のこ栽培：110-115，家の光協会，東京