Annual and seasonal fluctuations in leaf litterfall in an old-growth lucidiphylloous forest, southwestern Japan

Tamotsu SATO*1, Yohsuke KOMINAMI*2, Satoshi SAITO*1, Koaru NIYAMA*1 and Hiroyuki TANOUCHI*3

*1 森林総合研究所
For. and Forest Prod. Res. Inst., 1 Matsumosato, Tsukuba, Ibaraki 305-8687
*2 静岡大学
Shizuoka Univ., 836 Ohyba, Shizuoka, Shizuoka 422-8529
*3 森と里の研究所
Laboratory for development of farming and mountain area, 423-4 Okura, Toyono, Nagano 389-1102

Abstract: We examined leaf litterfall fluctuations on a seasonal and annual scale for 7 years (1992–1998) in an old-growth lucidiphylloous (evergreen broad-leaved) forest within the Aya Research Site, southwestern Japan. The average annual leaf litterfall input was 3.52 Mg·ha⁻¹, with the ratio of maximum to minimum input being 2.1. The annual input varied among years in relation to typhoon disturbances. The total leaf litterfall showed bimodal peak; leaf abscission in spring (April-May) and facultative peak in late summer (July-September) with typhoon disturbances. Based on 7 years monitoring data, seasonal patterns of leaf fall of dominant species were classified into 3 types: unimodal, bimodal, and multimodal type.

Keywords: evergreen broad-leaved forest, seasonal leaf fall pattern, annual fluctuation
林冠を構成する種（樹高20～25m）は、イスノキ・ウラジロガシ・アカガシ・タブノキ・シイノキなどであり、亜高木層（樹高10～15m）にはイスノキ・ザサキなどが優占している。調査地の平均気温は14.2℃であり、接近の続北ダムの観測施設による年降水量は3,070mmである（8）。

2. リターフォール サイト内の1.2ha コアブロックには、落葉量および種子落下量を計測する目的で、合計263個のトラップ（受容面0.58㎡）が規則的に配置されている。本研究では、樹種別の落葉量を直接観察するため、1.2ha コアブロックのうち、上部谷壁斜面に位置する50m×50m の区画を抽出して0.25 ha 方形とし、それぞれに含まれる25個のトラップから得られたデータをもとに解析を行った。毎月末にトラップの内容物を回収し、葉を対象とした種子ごとの選別を行った。対象とした種群は林冠を構成する高木種と亜高木層とした。相対的裁量を105℃×24時間の通風乾燥を行った後に乾燥重量を計測した。計測期間は、1992年1月から1998年12月までの7年間である。なお、最初の5年間については、種群ごとの葉の選別を通年で行ったが、1997年および1998年では落葉が多い春（4月～6月）に回収した裁量のみを対象とした。計測期間中に複数回の台風が試験地周辺に上陸もしくは接近しているが、宮崎地方気象台での最大風速が15 m/sを超えた台風を「強い台風」と定義した（1993年6月および9月、1996年8月の3例）。

III 結果と考察

1. 落葉量の年次変動 計測期間中の平均落葉量は、3.52 Mg・ha⁻¹であり、最大値と最小値の差は2.1倍であった（表-1）。計測期間を通じては、台風撲乱による1993年の顕著な増加と翌年の急激な減少を経て、1995年以降の落葉量は年次ごとの増減を観察していた。このように台風撲乱などの年次間変動の傾向は、葉の寿命が複数年におよぶ裸葉樹の特徴でもある。

2. 樹種ごとによる春季落葉量の年次変動 落葉の季節変動、台風の影響に影響されている。強い台風が記録されなかった年では、春季（4月～6月）のみに明瞭なピークを形成した。一方、強い台風が記録された年では、春季の他に7～9月の台風襲来時期にもピークを形成していた。春季の落葉（以下、春季落葉とする）のピークは、秋季に台風によって形成されるピークとは異なり、自然落葉が形成されており、年落葉量の35～54%を占めていた。また、この春季落葉量は、隔年で増減を繰り返す傾向にあった。

年間の落葉量の中でも大きな割合を占めていた春季落葉の年次変動を樹種別に比較してみると、アカガシとウラジロガシの2種は明確な隔年変化を示していた（図-1）。一方、タブノキとシイノキの2種はほとんどの変動を示さずにはいなかった。全体の春季落葉量はウラジロガシとアカガシの春季落葉量の隔年変化は同調していた。春季落ち葉量と同時に落下した花の量の関係をみると、正の相関関係が得られた（表-1）。特に1993年の台風撲乱後との関係の分析において有意な相関が得られた（r²=0.9318, p<0.0077）。

藤谷・鈴木（7）は、アカガシは落葉量の多い年には花量が多く、その年変動が隔年で増減を繰り返すことが示している。明瞭な隔年変化を示すウラジロガシとアカガシは、両種ともに先ず福島の地元を2年を要する性質を持っている（7）。本研究では、落下した花を種ごとに選別することを試みていないため、落葉量と花量との関係を種別に検討することはできない。しかし、ウラジロガシとアカガシの落葉量が低下する年は、いずれも落葉量のピークが見られた翌年であり、ほとんど年変動が見られないタブノキやシイノキとは大きく異なる（図-1）。これからのことは、藤谷・鈴木（7）がアカガシで示した花の生産と翌年の落葉量の低下の傾向がウラジロガシにも存在する可能性があることを示している。

3. 樹種ごとによる落葉の季節変化パターン 主要樹種8種においては、落葉のピークの出現時期が樹種により若干異なる傾向が見られた（図-2）。いずれの樹種も春季に落葉のピークに他、台風により不規則なピーク（図-2の中円）を形成していた。

主要な構成樹種の落葉の季節性を検討した結果、本研究では「一山型」、「二山型」および「複数山型」の3つを抽出することができた。

春季落葉以外には目立ったピークを形成していないタイプには、ウラジロガシ、マチバシ、シイノキの3種が区分された。これら一山型の3種のうち、ウラジロガシとシイノキは6月を頂点とする4月から6月にかけての落葉が見られた。しかし、マチバシはピークの時期が6月にずれ込んでいる点が他の2種と異なっていた。

一方、春季落葉の他に秋にも一つ一つピークがあるタイプには、アカガシ、タブノキ、ホソバタブ、サカキの4種が該当した。これら二山型の種の秋のピークは、8月から11月の間に出現在するが、その量は春季落葉量に比べて少なかった。また、秋のピークは、台風期に重なることもあり、タブノキやホソバタブでは台風による撲乱を伴う年には増幅されていた。
イスノキは、落葉のピークが2つ存在することはアカガシなどの二山型と同じであるが、上記の2つのタイプとは異なり、10～11月に出現するピークが春季のピークよりも卓越する傾向にあった（図-2）。台風による揺乱を伴わない1994年にも、台風期に落葉のピークも見られることから年齢3年のピークがある可能性がある。このことから、落葉のタイプとして複数山型に区分した。

照葉樹林における春季落葉は、新葉の展開とほぼ同時に生じている。一方で、夏季から秋季にかけて出現する2つのピークはいわゆる「偶発的な落葉」であり、刷新年による変動が大きい。NITTA and OHSAWA（6）は、北限域の照葉樹林の枝の伸長の解析から、国内の常緑広葉樹の多くの種が年に1回の展葉を春に行っているが、気候条件により複数回の展葉が可能であることを指摘している。本研究では各樹種の開葉のフェノロジーを観察していないが、より良い結果の温暖な試験地周辺では複数回にわたる展葉が生じている可能性がある。つまり、秋季における落葉のピークは、台風などに代表される外部ストレスによる場合と展葉を伴う生理的な場合があると考えられる。

今回、複数山型の落葉パターンを示したイスノキは、南九州の照葉樹成熟林の代表的な優占種である。イスノキは、秋季の落葉のピークが春季のそれと重なり、他の樹種には見られない季節性を示している。

表-1 計測期間（1992年～1998年）における落葉量の変化

Table 1 Annual fluctuations in leaf litterfall during the measuring period (1992-1998)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>年落葉量</td>
<td></td>
<td>3.87</td>
<td>5.66</td>
<td>2.72</td>
<td>2.97</td>
<td>3.14</td>
<td>3.50</td>
<td>2.80</td>
</tr>
<tr>
<td></td>
<td>平均</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>春季落葉量</td>
<td>(4月〜6月)</td>
<td>1.75</td>
<td>2.69</td>
<td>1.16</td>
<td>1.61</td>
<td>1.11</td>
<td>1.31</td>
<td>1.31</td>
</tr>
<tr>
<td></td>
<td>(45.2)</td>
<td>(47.6)</td>
<td>(42.9)</td>
<td>(54.1)</td>
<td>(35.3)</td>
<td>(37.5)</td>
<td>(46.9)</td>
<td>(44.2)</td>
</tr>
<tr>
<td>台風時期の落葉量</td>
<td>(7月〜9月)</td>
<td>0.34</td>
<td>2.28</td>
<td>0.83</td>
<td>0.51</td>
<td>1.22</td>
<td>1.06</td>
<td>0.66</td>
</tr>
<tr>
<td></td>
<td>(34.7)</td>
<td>(40.3)</td>
<td>(30.6)</td>
<td>(17.0)</td>
<td>(38.7)</td>
<td>(30.2)</td>
<td>(23.6)</td>
<td>(30.7)</td>
</tr>
<tr>
<td>春季の落葉量</td>
<td>0.05</td>
<td>0.19</td>
<td>0.05</td>
<td>0.22</td>
<td>0.08</td>
<td>0.12</td>
<td>0.13</td>
<td></td>
</tr>
<tr>
<td>強い台風の数</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

単位：Mg ha⁻¹
カッコ内の数値は年落葉量に対する割合（％）
強い台風の定義：宮崎地方気象台の最大風速が15m s⁻¹を超えた台風
central Japan. Plant Ecol. 130: 71-88


図－1. 計測期間（1992年〜1998年）における主要樹種の春秋季葉量の年々変化
Fig. 1 Annual fluctuations in vernal leaf litterfall (April - July) during the measuring period (1992-1998)

図－2. 計測期間（1992年〜1996年）における主要樹種の落葉量の季節変化
Fig. 2 Seasonal fluctuations in leaf litterfall during the measuring period (1992-1996)